Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37769126

RESUMEN

Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.


Asunto(s)
Ayuno Intermitente , Multiómica , Humanos , Ratones , Animales , Proteoma , Ayuno/fisiología , Metabolismo Energético
2.
Aging (Albany NY) ; 13(11): 14651-14674, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074801

RESUMEN

Vascular dementia (VaD) is a progressive cognitive impairment of vascular etiology. VaD is characterized by cerebral hypoperfusion, increased blood-brain barrier permeability and white matter lesions. An increased burden of VaD is expected in rapidly aging populations. The hippocampus is particularly susceptible to hypoperfusion, and the resulting memory impairment may play a crucial role in VaD. Here we have investigated the hippocampal gene expression profile of young and old mice subjected to cerebral hypoperfusion by bilateral common carotid artery stenosis (BCAS). Our data in sham-operated young and aged mice reveal an age-associated decline in cerebral blood flow and differential gene expression. In fact, BCAS and aging caused broadly similar effects. However, BCAS-induced changes in hippocampal gene expression differed between young and aged mice. Specifically, transcriptomic analysis indicated that in comparison to young sham mice, many pathways altered by BCAS in young mice resembled those already present in sham aged mice. Over 30 days, BCAS in aged mice had minimal effect on either cerebral blood flow or hippocampal gene expression. Immunoblot analyses confirmed these findings. Finally, relative to young sham mice the cell type-specific profile of genes in both young BCAS and old sham animals further revealed common cell-specific genes. Our data provide a genetic-based molecular framework for hypoperfusion-induced hippocampal damage and reveal common cellular signaling pathways likely to be important in the pathophysiology of VaD.


Asunto(s)
Envejecimiento/genética , Perfilación de la Expresión Génica , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Animales , Circulación Cerebrovascular/genética , Enfermedad Crónica , Regulación de la Expresión Génica , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo
3.
Nat Commun ; 12(1): 2286, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863882

RESUMEN

We recently discovered that Mfsd2b, which is the S1P exporter found in blood cells. Here, we report that Mfsd2b is critical for the release of all S1P species in both resting and activated platelets. We show that resting platelets store S1P in the cytoplasm. After activation, this S1P pool is delivered to the plasma membrane, where Mfsd2b is predominantly localized for export. Employing knockout mice of Mfsd2b, we reveal that platelets contribute a minor amount of plasma S1P. Nevertheless, Mfsd2b deletion in whole body or platelets impairs platelet morphology and functions. In particular, Mfsd2b knockout mice show significantly reduced thrombus formation. We show that loss of Mfsd2b affects intrinsic platelet functions as part of remarkable sphingolipid accumulation. These findings indicate that accumulation of sphingolipids including S1P by deletion of Mfsd2b strongly impairs platelet functions, which suggests that the transporter may be a target for the prevention of thrombotic disorders.


Asunto(s)
Plaquetas/metabolismo , Lisofosfolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Esfingosina/análogos & derivados , Trombosis de la Vena/patología , Animales , Plaquetas/citología , Plaquetas/efectos de los fármacos , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Pruebas de Función Plaquetaria , Esfingosina/metabolismo , Trombosis de la Vena/sangre , Trombosis de la Vena/diagnóstico , Trombosis de la Vena/tratamiento farmacológico
4.
Brain Behav ; 10(1): e01444, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804775

RESUMEN

INTRODUCTION: Intermittent fasting (IF) has been suggested to have neuroprotective effects through the activation of multiple signaling pathways. Rodents fasted intermittently exhibit enhanced hippocampal neurogenesis and long-term potentiation (LTP) at hippocampal synapses compared with sedentary animals fed an ad libitum (AL) diet. However, the underlying mechanisms have not been studied. In this study, we evaluated the mechanistic gap in understanding IF-induced neurogenesis. METHODS: We evaluated the impact of 3 months of IF (12, 16, and 24 hr of food deprivation on a daily basis) on hippocampal neurogenesis in C57BL/6NTac mice using immunoblot analysis. RESULTS: Three-month IF significantly increased activation of the Notch signaling pathway (Notch 1, NICD1, and HES5), neurotrophic factor BDNF, and downstream cellular transcription factor, cAMP response element-binding protein (p-CREB). The expression of postsynaptic marker, PSD95, and neuronal stem cell marker, Nestin, was also increased in the hippocampus in response to 3-month IF. CONCLUSIONS: These findings suggest that IF may increase hippocampal neurogenesis involving the Notch 1 pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ayuno/metabolismo , Hipocampo/metabolismo , Neurogénesis/fisiología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo
5.
Dose Response ; 17(3): 1559325819876780, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598117

RESUMEN

Scope: Intermittent fasting (IF) has been extensively reported to promote improved energy homeostasis and metabolic switching. While IF may be a plausible strategy to ameliorate the epidemiological burden of disease in many societies, our understanding of the underlying molecular mechanisms behind such effects is still lacking. The present study has sought to investigate the relationship between IF and changes in gene expression. We focused on the liver, which is highly sensitive to metabolic changes due to energy status. Mice were randomly assigned to ad libitum feeding or IF for 16 hours per day or for 24 hours on alternate days for 3 months, after which genome-wide transcriptome analysis of the liver was performed using RNA sequencing. Our findings revealed that IF caused robust transcriptomic changes in the liver that led to a complex array of metabolic changes. We also observed that the IF regimen produced distinct profiles of transcriptomic changes, highlighting the significance of temporally different periods of energy restriction. Our results suggest that IF can regulate metabolism via transcriptomic mechanisms and provide insight into how genetic interactions within the liver might lead to the numerous metabolic benefits of IF.

6.
Proc Natl Acad Sci U S A ; 116(25): 12516-12523, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31164420

RESUMEN

BACE1 is the rate-limiting enzyme for amyloid-ß peptides (Aß) generation, a key event in the pathogenesis of Alzheimer's disease (AD). By an unknown mechanism, levels of BACE1 and a BACE1 mRNA-stabilizing antisense RNA (BACE1-AS) are elevated in the brains of AD patients, implicating that dysregulation of BACE1 expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of BACE1 and BACE1-AS through binding to antioxidant response elements (AREs) in their promoters of mouse and human. NRF2-mediated inhibition of BACE1 and BACE1-AS expression is independent of redox regulation. NRF2 activation decreases production of BACE1 and BACE1-AS transcripts and Aß production and ameliorates cognitive deficits in animal models of AD. Depletion of NRF2 increases BACE1 and BACE1-AS expression and Aß production and worsens cognitive deficits. Our findings suggest that activation of NRF2 can prevent a key early pathogenic process in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Trastornos del Conocimiento/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Isotiocianatos/farmacología , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/biosíntesis , Regiones Promotoras Genéticas , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Sulfóxidos , Transcripción Genética
7.
Brain Behav Immun ; 75: 34-47, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195027

RESUMEN

Stroke is the second leading cause of death in the world and a major cause of long-term disability. Recent evidence has provided insight into a newly described inflammatory mechanism that contributes to neuronal and glial cell death, and impaired neurological outcome following ischemic stroke - a form of sterile inflammation involving innate immune complexes termed inflammasomes. It has been established that inflammasome activation following ischemic stroke contributes to neuronal cell death, but little is known about inflammasome function and cell death in activated microglial cells following cerebral ischemia. Microglia are considered the resident immune cells that function as the primary immune defense in the brain. This study has comprehensively investigated the expression and activation of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in isolates of microglial cells subjected to simulated ischemic conditions and in the brain following ischemic stroke. Immunoblot analysis from culture media indicated microglial cells release inflammasome components and inflammasome activation-dependent pro-inflammatory cytokines following ischemic conditions. In addition, a functional role for NLRC4 inflammasomes was determined using siRNA knockdown of NLRC4 and pharmacological inhibitors of caspase-1 and -8 to target apoptotic and pyroptotic cell death in BV2 microglial cells under ischemic conditions. In summary, the present study provides evidence that the NLRC4 inflammasome complex mediates the inflammatory response, as well as apoptotic and pyroptotic cell death in microglial cells under in vitro and in vivo ischemic conditions.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/fisiología , Encéfalo/metabolismo , Isquemia Encefálica/inmunología , Isquemia Encefálica/fisiopatología , Proteínas de Unión al Calcio/fisiología , Caspasa 1/metabolismo , Muerte Celular , Inflamasomas/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Piroptosis/inmunología , Transducción de Señal/fisiología , Accidente Cerebrovascular/inmunología
8.
Theranostics ; 8(17): 4795-4804, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279738

RESUMEN

Inhibition of Notch signalling has shown anti-inflammatory properties in vivo and in vitro models of rheumatoid arthritis (RA). The objective of this study was to determine whether Notch1 might play a role in regulating T-regulatory cells (Tregs) in animal models of RA. Methods: Collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) were induced in C57BL/6, Notch1 antisense transgenic (NAS) or DBA1/J mice. We examined whether pharmacological inhibitors of γ-secretase (an enzyme required for Notch1 activation) and antisense-mediated knockdown of Notch1 could attenuate the severity of inflammatory arthritis in CIA and CAIA mice. Proportions of CD4+CD25+Foxp3+ Treg cells were measured by flow cytometry. To assess the suppressive capacity of Treg toward responder cells, CFSE-based suppression assay of Treg was performed. Results: γ-secretase inhibitors and antisense-mediated knockdown of Notch1 reduced the severity of inflammatory arthritis in both CIA and CAIA mice. Pharmacological and genetic inhibition of Notch1 signalling induced significant elevation of Treg cell population in CIA and CAIA mice. We also demonstrated that inhibition of Notch signalling suppressed the progression of inflammatory arthritis through modulating the expansion and suppressive function of regulatory T (Treg) cells. Conclusion: Pharmacological and genetic inhibition of Notch1 signalling suppresses the progression of inflammatory arthritis through modulating the population and suppressive function of Treg cells in animal models of RA.


Asunto(s)
Artritis Reumatoide/patología , Artritis Reumatoide/fisiopatología , Receptor Notch1/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Artritis Reumatoide/inducido químicamente , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Transducción de Señal
10.
Mol Neurobiol ; 55(12): 9188-9203, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29654491

RESUMEN

Sirtuin 2 (SIRT2) is a family member of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases which appears to have detrimental roles in an array of neurological disorders such as Parkinson's disease (PD) and Huntington's disease (HD). In light of the recently emerging roles of sirtuins in normal physiology and pathological conditions such as ischemic stroke, we investigated the role of SIRT2 in ischemic stroke-induced neuronal cell death. Primary cortical neurons were subjected to oxygen-glucose deprivation (OGD) under in vitro ischemic conditions, and subsequently tested for the efficacy of SIRT2 inhibitors AK1 and AGK2 in attenuating apoptotic cell death caused by OGD. We have also evaluated the effect of SIRT2 inhibition in C57BL/6 mice subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion, which is a model for ischemic reperfusion injury in vivo. Significant reductions in apoptotic cell death were noted in neurons treated with AK1 or AGK2, as evidenced by reduced cleaved caspase-3 and other apoptotic markers such as Bim and Bad. In addition, downregulation of phosphorylated-AKT and FOXO3a proteins of the AKT/FOXO3a pathway, as well as a marked reduction of JNK activity and its downstream target c-Jun, were also observed. When tested in animals subjected to MCAO, the neuroprotective effects of AGK2 in vivo were evidenced by a substantial reduction in ipsilateral infarct area and a significant improvement in neurological outcomes. A similar reduction in the levels of pro-apoptotic proteins in the infarct tissue, as well as downregulation of AKT/FOXO3a and JNK pathway, were also noted. In summary, the current study demonstrated the neuroprotective effects of SIRT2 inhibition in ischemic stroke, and identified the downregulation of AKT/FOXO3a and MAPK pathways as intermediary mechanisms which may contribute to the reduction in apoptotic cell death by SIRT2 inhibition.


Asunto(s)
Isquemia Encefálica/metabolismo , Regulación hacia Abajo , Proteína Forkhead Box O3/metabolismo , Sistema de Señalización de MAP Quinasas , Neuroprotección , Sirtuina 2/antagonistas & inhibidores , Accidente Cerebrovascular/metabolismo , Animales , Apoptosis , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Furanos/farmacología , Furanos/uso terapéutico , Glucosa , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas , Neuroprotección/efectos de los fármacos , Oxígeno , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Quinolinas/uso terapéutico , Daño por Reperfusión , Sirtuina 2/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Regulación hacia Arriba/genética
11.
Prog Neurobiol ; 165-167: 103-116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29574014

RESUMEN

Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Muerte Celular/fisiología , Hipoxia Encefálica/metabolismo , Neuronas/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Humanos
12.
Hum Mol Genet ; 27(9): 1497-1513, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447348

RESUMEN

Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.


Asunto(s)
Isquemia Encefálica/genética , Ayuno/fisiología , Transcriptoma/genética , Animales , Restricción Calórica , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
J Cereb Blood Flow Metab ; 38(10): 1781-1795, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28617078

RESUMEN

Stroke is the world's second leading cause of mortality, with a high incidence of morbidity. Numerous neuronal membrane receptors are activated by endogenous ligands and may contribute to infarct development. Notch is a well-characterized membrane receptor involved in cell differentiation and proliferation, and now shown to play a pivotal role in cell death during ischemic stroke. Blockade of Notch signaling by inhibition of γ-secretase, an enzyme that generates the active form of Notch, is neuroprotective following stroke. We have also identified that Pin1, a peptidyl-prolyl isomerase that regulates p53 transactivation under stress, promotes the pathogenesis of ischemic stroke via Notch signaling. Moreover, Notch can also mediate cell death through a p53-dependent pathway, resulting in apoptosis of neural progenitor cells. The current study has investigated the interplay between Notch and p53 under ischemic stroke conditions. Using pharmacological inhibitors, we have demonstrated that a Notch intracellular domain (NICD)/p53 interaction is involved in transcriptional regulation of genes downstream of p53 and NICD to modify stroke severity. Furthermore, the NICD/p53 interaction confers stability to p53 by rescuing it from ubiquitination. Together, these results indicate that Notch contributes to the pathogenesis of ischemic stroke by promoting p53 stability and signaling.


Asunto(s)
Neuronas/metabolismo , Receptores Notch/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Transducción de Señal/fisiología
14.
Mol Neurobiol ; 55(2): 1082-1096, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28092085

RESUMEN

Multi-protein complexes, termed "inflammasomes," are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1ß and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Accidente Cerebrovascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antracenos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butadienos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Imidazoles/farmacología , Inflamasomas/efectos de los fármacos , Ratones , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/efectos de los fármacos , Nitrilos/farmacología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología
15.
J Neurosci ; 37(20): 5099-5110, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28432138

RESUMEN

Excessive mitochondrial fission is a prominent early event and contributes to mitochondrial dysfunction, synaptic failure, and neuronal cell death in the progression of Alzheimer's disease (AD). However, it remains to be determined whether inhibition of excessive mitochondrial fission is beneficial in mammal models of AD. To determine whether dynamin-related protein 1 (Drp1), a key regulator of mitochondrial fragmentation, can be a disease-modifying therapeutic target for AD, we examined the effects of Drp1 inhibitor on mitochondrial and synaptic dysfunctions induced by oligomeric amyloid-ß (Aß) in neurons and neuropathology and cognitive functions in Aß precursor protein/presenilin 1 double-transgenic AD mice. Inhibition of Drp1 alleviates mitochondrial fragmentation, loss of mitochondrial membrane potential, reactive oxygen species production, ATP reduction, and synaptic depression in Aß-treated neurons. Furthermore, Drp1 inhibition significantly improves learning and memory and prevents mitochondrial fragmentation, lipid peroxidation, BACE1 expression, and Aß deposition in the brain in the AD model. These results provide evidence that Drp1 plays an important role in Aß-mediated and AD-related neuropathology and in cognitive decline in an AD animal model. Therefore, inhibiting excessive Drp1-mediated mitochondrial fission may be an efficient therapeutic avenue for AD.SIGNIFICANCE STATEMENT Mitochondrial fission relies on the evolutionary conserved dynamin-related protein 1 (Drp1). Drp1 activity and mitochondria fragmentation are significantly elevated in the brains of sporadic Alzheimer's disease (AD) cases. In the present study, we first demonstrated that the inhibition of Drp1 restored amyloid-ß (Aß)-mediated mitochondrial dysfunctions and synaptic depression in neurons and significantly reduced lipid peroxidation, BACE1 expression, and Aß deposition in the brain of AD mice. As a result, memory deficits in AD mice were rescued by Drp1 inhibition. These results suggest that neuropathology and combined cognitive decline can be attributed to hyperactivation of Drp1 in the pathogenesis of AD. Therefore, inhibitors of excessive mitochondrial fission, such as Drp1 inhibitors, may be a new strategy for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Trastornos del Conocimiento/fisiopatología , Dinaminas/metabolismo , Depresión Sináptica a Largo Plazo , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/complicaciones , Animales , Encéfalo/fisiopatología , Trastornos del Conocimiento/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural
16.
Sci Rep ; 6: 19377, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26786165

RESUMEN

Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Oxidación-Reducción , Receptor Notch1/deficiencia , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Línea Celular , Dieta/efectos adversos , Hígado Graso/patología , Técnicas de Silenciamiento del Gen , Humanos , Resistencia a la Insulina/genética , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo , Interferencia de ARN , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Ann Neurol ; 77(3): 504-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25558977

RESUMEN

OBJECTIVE: Stroke is a leading cause of mortality and disability. The peptidyl-prolyl cis/trans isomerase Pin1 regulates factors involved in cell growth. Recent evidence has shown that Pin1 plays a major role in apoptosis. However, the role of Pin1 in ischemic stroke remains to be investigated. METHODS: We used Pin1 overexpression and knockdown to manipulate Pin1 expression and explore the effects of Pin1 in cell death on ischemic stress in vitro and in a mouse stroke model. We also used Pin 1 inhibitor, γ-secretase inhibitor, Notch1 intracellular domain (NICD1)-deleted mutant cells, and Pin1 mutant cells to investigate the underlying mechanisms of Pin1-NICD1-mediated cell death. RESULTS: Our findings indicate that Pin1 facilitates NICD1 stability and its proapoptotic function following ischemic stroke. Thus, overexpression of Pin1 increased NICD1 levels and enhanced its potentiation of neuronal death in simulated ischemia. By contrast, depletion or knockout of Pin1 reduced the NICD1 level, which in turn desensitized neurons to ischemic conditions. Pin1 interacted with NICD1 and increased its stability by inhibiting FBW7-induced polyubiquitination. We also demonstrate that Pin1 and NICD1 levels increase following stroke. Pin1 heterozygous (+/-) and knockout (-/-) mice, and also wild-type mice treated with an inhibitor of Pin1, each showed reduced brain damage and improved functional outcomes in a model of focal ischemic stroke. INTERPRETATION: These results suggest that Pin1 contributes to the pathogenesis of ischemic stroke by promoting Notch signaling, and that inhibition of Pin1 is a novel approach for treating ischemic stroke.


Asunto(s)
Apoptosis/fisiología , Isquemia/metabolismo , Neuronas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Isquemia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/genética , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/fisiología , Accidente Cerebrovascular/tratamiento farmacológico
18.
Ann Rheum Dis ; 74(1): 267-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24255545

RESUMEN

OBJECTIVE: To test the hypothesis that Notch signalling plays a role in the pathogenesis of rheumatoid arthritis (RA) and to determine whether pharmacological inhibition of Notch signalling with γ-secretase inhibitors can ameliorate the RA disease process in an animal model. METHODS: Collagen-induced arthritis was induced in C57BL/6 or Notch antisense transgenic mice by immunisation with chicken type II collagen (CII). C57BL/6 mice were administered with different doses of inhibitors of γ-secretase, an enzyme required for Notch activation, at disease onset or after onset of symptoms. Severity of arthritis was monitored by clinical and histological scores, and in vivo non-invasive near-infrared fluorescence (NIRF) images. Micro-CT was used to confirm joint destruction. The levels of CII antibodies and cytokines in serum were determined by ELISA and bead-based cytokine assay. The expression levels of cytokines were studied by quantitative PCR in rheumatoid synovial fibroblasts. RESULTS: The data show that Notch signalling stimulates synoviocytes and accelerates their production of proinflammatory cytokines and immune responses involving the upregulation of IgG1 and IgG2a. Pharmacological inhibition of γ-secretase and antisense-mediated knockdown of Notch attenuates the severity of inflammatory arthritis, including arthritis indices, paw thickness, tissue damage and neutrophil infiltration, and reduces the levels of active NF-κB, ICAM-1, proinflammatory cytokines and matrix metalloproteinase-3 activity in the mouse model of RA. CONCLUSIONS: These results suggest that Notch is involved in the pathogenesis of RA and that inhibition of Notch signalling is a novel approach for treating RA.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Citocinas/inmunología , Receptores Notch/inmunología , Transducción de Señal/inmunología , Membrana Sinovial/inmunología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Citocinas/efectos de los fármacos , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/antagonistas & inhibidores , Receptores Notch/efectos de los fármacos , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos
19.
Neurobiol Dis ; 62: 286-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24141018

RESUMEN

Recent findings suggest that Notch-1 signaling contributes to neuronal death in ischemic stroke, but the underlying mechanisms are unknown. Hypoxia inducible factor-1α (HIF-1α), a global regulator of cellular responses to hypoxia, can interact with Notch and modulate its signaling during hypoxic stress. Here we show that Notch signaling interacts with the HIF-1α pathway in the process of ischemic neuronal death. We found that a chemical inhibitor of the Notch-activating enzyme, γ-secretase, and a HIF-1α inhibitor, protect cultured cortical neurons against ischemic stress, and combined inhibition of Notch-1 and HIF-1α further decreased neuronal death. HIF-1α and Notch intracellular domain (NICD) are co-expressed in the neuronal nucleus, and co-immunoprecipitated in cultured neurons and in brain tissue from mice subjected to focal ischemic stroke. Overexpression of NICD and HIF-1α in cultured human neural cells enhanced cell death under ischemia-like conditions, and a HIF-1α inhibitor rescued the cells. RNA interference-mediated depletion of endogenous NICD and HIF-1α also decreased cell death under ischemia-like conditions. Finally, mice treated with inhibitors of γ-secretase and HIF-1α exhibited improved outcome after focal ischemic stroke, with combined treatment being superior to individual treatments. Additional findings suggest that the NICD and HIF-1α collaborate to engage pro-inflammatory and apoptotic signaling pathways in stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Humanos , Infarto de la Arteria Cerebral Anterior/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo
20.
Exp Neurol ; 250: 341-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24196452

RESUMEN

Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors that initiate signals in response to diverse pathogen-associated molecular patterns. Several groups have recently reported a role for TLR2 and TLR4 in ischemic stroke-induced brain injury. However, relatively little is known about the role of TLR8 in ischemic stroke. Here we provide the first evidence that TLR8 activation plays a detrimental role in stroke outcome by promoting neuronal apoptosis and T cell-mediated post-stroke inflammation. TLR8 is expressed in cerebral cortical neurons, where its levels and downstream signaling via JNK are increased in response to oxygen glucose deprivation (OGD). Treatment with a TLR8 agonist activated pro-apoptotic JNK and increased neuronal cell death during OGD. Furthermore, selective knockdown of TLR8 using siRNA protected SH-SY5Y cells following OGD, and TLR8 agonist administration in vivo increased mortality, neurological deficit and T cell infiltration following stroke. Taken together, our findings indicate a detrimental role for neuronal TLR8 signaling in the triggering of post-stroke inflammation and neuronal death.


Asunto(s)
Apoptosis/fisiología , Transducción de Señal/fisiología , Accidente Cerebrovascular/metabolismo , Receptor Toll-Like 8/metabolismo , Animales , Western Blotting , Línea Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/inmunología , Receptor Toll-Like 8/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA